A Lipschitz Stable Reconstruction Formula for the Inverse Problem for the Wave Equation
نویسندگان
چکیده
We consider the problem to reconstruct a wave speed c ∈ C∞(M) in a domain M ⊂ R from acoustic boundary measurements modelled by the hyperbolic Dirichlet-to-Neumann map Λ. We introduce a reconstruction formula for c that is based on the Boundary Control method and incorporates features also from the complex geometric optics solutions approach. Moreover, we show that the reconstruction formula is locally Lipschitz stable for a low frequency component of c−2 under the assumption that the Riemannian manifold (M, c−2dx2) has a strictly convex function with no critical points. That is, we show that for all bounded C neighborhoods U of c, there is a C neighborhood V of c and constants C,R > 0 such that |F ( c̃−2 − c−2 ) (ξ)| ≤ Ce2R|ξ| ∥∥∥Λ̃− Λ∥∥∥ ∗ , ξ ∈ R, for all c̃ ∈ U ∩V , where Λ̃ is the Dirichlet-to-Neumann map corresponding to the wave speed c̃ and ‖·‖∗ is a norm capturing certain regularity properties of the Dirichlet-to-Neumann maps.
منابع مشابه
Boundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method
In this paper, we consider an inverse boundary value problem for two-dimensional heat equation in an annular domain. This problem consists of determining the temperature on the interior boundary curve from the Cauchy data (boundary temperature and heat flux) on the exterior boundary curve. To this end, the boundary integral equation method is used. Since the resulting system of linea...
متن کاملThe numerical values of the nodal points for the Sturm-Liouville equation with one turning point
An inverse nodal problem has first been studied for the Sturm-Liouville equation with one turning point. The asymptotic representation of the corresponding eigenfunctions of the eigenvalues has been investigated and an asymptotic of the nodal points is obtained. For this problem, we give a reconstruction formula for the potential function. Furthermore, numerical examples have been established a...
متن کاملInverse Sturm-Liouville problem with discontinuity conditions
This paper deals with the boundary value problem involving the differential equation begin{equation*} ell y:=-y''+qy=lambda y, end{equation*} subject to the standard boundary conditions along with the following discontinuity conditions at a point $ain (0,pi)$ begin{equation*} y(a+0)=a_1 y(a-0),quad y'(a+0)=a_1^{-1}y'(a-0)+a_2 y(a-0), end{equation*} where $q(x), a_1 , a_2$ are rea...
متن کاملA remark on Lipschitz stability for inverse problems
An abstract Lipschitz stability estimate is proved for a class of inverse problems. It is then applied to the inverse Robin problem for the Laplace equation and to the inverse medium problem for the Helmholtz equation. Key-words: Derivative in the sense of Fréchet, Lipschitz stability, inverse Robin problem, inverse medium problem ha l-0 07 41 89 2, v er si on 1 15 O ct 2 01 2 Une remarque sur ...
متن کاملOn the determination of asymptotic formula of the nodal points for the Sturm-Liouville equation with one turning point
In this paper, the asymptotic representation of the corresponding eigenfunctions of the eigenvalues has been investigated. Furthermore, we obtain the zeros of eigenfunctions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016